True location of deep brain stimulation electrodes differs from what is seen on postoperative magnetic resonance images: An anthropomorphic phantom study

Noa B. Nuzov, Bhumi Bhusal, Kaylee R. Henry, Fuchang Jiang, Joshua Rosenow, Behzad Elahi, Laleh Golestanirad*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Deep brain stimulation (DBS) is an established yet growing treatment for a range of neurological and psychiatric disorders. Over the last decade, numerous studies have underscored the effect of electrode placement on the clinical outcome of DBS. As a result, imaging is now extensively used for DBS electrode localization, even though the accuracy of different modalities in determining the true coordinates of DBS electrodes is less explored. Postoperative magnetic resonance imaging (MRI) is a gold standard method for DBS electrode localization, however, the geometrical distortion induced by the lead's artifact could limit the accuracy. In this work, we investigated to what degree the difference between the true location of the lead's tip and the location of the tip estimated from the MRI artifact varies depending on the MRI sequence parameters, acquisition plane, phase encoding direction, and the implant's extracranial trajectory.

Original languageEnglish (US)
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1863-1866
Number of pages4
ISBN (Electronic)9781728127828
DOIs
StatePublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: Jul 11 2022Jul 15 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period7/11/227/15/22

ASJC Scopus subject areas

  • Signal Processing
  • Health Informatics
  • Computer Vision and Pattern Recognition
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'True location of deep brain stimulation electrodes differs from what is seen on postoperative magnetic resonance images: An anthropomorphic phantom study'. Together they form a unique fingerprint.

Cite this