Abstract
Dynamic post-translational modifications allow the rapid, specific, and tunable regulation of protein functions in eukaryotic cells. S-acylation is the only reversible lipid modification of proteins, in which a fatty acid, usually palmitate, is covalently attached to a cysteine residue of a protein by a zDHHC palmitoyl acyltransferase enzyme. Depalmitoylation is required for acylation homeostasis and is catalyzed by an enzyme from the alpha/beta hydrolase family of proteins usually acyl-protein thioesterase (APT1). The enzyme responsible for depalmitoylation in Trypanosoma brucei parasites is currently unknown. We demonstrate depalmitoylation activity in live bloodstream and procyclic form trypanosomes sensitive to dose-dependent inhibition with the depalmitoylation inhibitor, palmostatin B. We identified a homologue of human APT1 in Trypanosoma brucei which we named TbAPT-like (TbAPT-L). Epitope-tagging of TbAPT-L at N- and C- termini indicated a cytoplasmic localization. Knockdown or over-expression of TbAPT-L in bloodstream forms led to robust changes in TbAPT-L mRNA and protein expression but had no effect on parasite growth in vitro, or cellular depalmitoylation activity. Esterase activity in cell lysates was also unchanged when TbAPT-L was modulated. Unexpectedly, recombinant TbAPT-L possesses esterase activity with specificity for short- and medium-chain fatty acid substrates, leading to the conclusion, TbAPT-L is a lipase, not a depalmitoylase.
Original language | English (US) |
---|---|
Article number | 1245 |
Journal | Pathogens |
Volume | 11 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2022 |
Keywords
- Trypanosoma brucei
- alpha/beta hydrolase
- depalmitoylation
- esterase
- lipase
- palmitoylation
- post-translational modification
- thioesterase
- trypanosome
ASJC Scopus subject areas
- Microbiology (medical)
- Infectious Diseases
- Immunology and Microbiology(all)
- Molecular Biology
- Immunology and Allergy