Tsunami scenarios and hazard assessment along the northern coast of haiti

A. Gailler*, E. Calais, H. Hébert, C. Roy, E. Okal

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The northeastern Caribbean island arc, which materializes the boundary between the North American and Caribbean plates, is particularly exposed to large earthquakes and tsunamis. The low level of preparedness of a large part of its population and the lack of risk reduction provisions in public policies in many countries of the region put their population and economy at high risk in case of large telluric events. Here, we investigate the impact of three possible earthquake scenarios, consistent with the regional seismotectonic setting, on northern Haiti through inundation by tsunami waves. These scenarios simulate the effect of a M8.0 earthquake on the Septentrional strike-slip fault (possibly similar to the 1842 earthquake), a M8.1 earthquake on the offshore thrust fault system north of Haiti, and an earthquake rupturing a large portion of the offshore thrust fault system north of Haiti and the Dominican Republic.We calculate run-up heights along the northern coast of Haiti, in particular in the densely populated Cap Haitien.We find that the rupture of the offshore North Hispaniola thrust fault could result in wave heights up to 10m with inundation up to 4 km inland, with only 10-15 min between ground shaking and the first wave arrivals. The city of Cap Haitien is particularly exposed, with potential flooding of most of the city and its suburbs, including the international airport. We also find that the historical reports available for the 1842 earthquake, when compared to our simulations, favor a rupture of the North Hispaniola thrust fault, although much uncertainty remains. If the 1842 earthquake did not rupture the Septentional fault offshore Haiti, then it is currently capable of at least a Mw7.7 earthquake, significantly larger than previously thought. The simulations presented here provide a basis for developing conservative maps of run-up heights that can be transferred, with added factors of safety, into practical implementation for tsunami preparedness and protection.

Original languageEnglish (US)
Pages (from-to)2287-2302
Number of pages16
JournalGeophysical Journal International
Volume203
Issue number3
DOIs
StatePublished - 2015

Keywords

  • Atlantic ocean
  • Numerical solutions
  • Tsunamis
  • Wave propagation

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Tsunami scenarios and hazard assessment along the northern coast of haiti'. Together they form a unique fingerprint.

Cite this