Tube curvature slows the motion of rod-coil block copolymers through activated reptation

Muzhou Wang, Alexei E. Likhtman, Bradley D. Olsen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Understanding the dynamics of molecules with complex shapes is important as researchers develop advanced materials using hybrid molecules. This study applies a slip-spring model to visualize and quantify the entangled dynamics of rod-coil block copolymers. The parameters of the model are determined by matching with molecular dynamics simulation results. By monitoring the positions of polymers along the entanglement tube, rod-coil copolymers are shown to disfavor configurations where the rod occupies curved portions of the tube of randomly varying curvature created by the coil ends. This confirms that reptation of copolymers occurs by an activated mechanism and is the first demonstration of the activation barriers that have been previously inferred through diffusion measurements by simulation and experiment. The barriers to diffusion are further quantified by considering the curvilinear motion of ring polymers, and their effect on diffusion is quantitatively captured by considering one-dimensional motion along an entanglement tube with a rough free energy potential.

Original languageEnglish (US)
Pages (from-to)242-246
Number of pages5
JournalACS Macro Letters
Volume4
Issue number2
DOIs
StatePublished - Feb 17 2015

ASJC Scopus subject areas

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Tube curvature slows the motion of rod-coil block copolymers through activated reptation'. Together they form a unique fingerprint.

Cite this