Abstract
Using poly(propylene sulfide) (PPS) and poly(ethylene glycol) (PEG) as components of a nanocarrier platform, we sought to compare immune responses induced by PPS-bl-PEG polymersomes (PSs; watery-core structures, with antigen incorporated within the PSs) and PEG-stabilized PPS nanoparticles (NPs; solid-core structures, with antigen conjugated upon the NP surface). We have previously shown strong CD8+ T cell responses to antigen conjugated to NPs via a disulfide link, and here we investigated the extent to which antigen incorporated within oxidatively-sensitive PSs could induce CD4+ or CD8+ T cell responses. C57BL/6 mice were subcutaneously immunized with free ovalbumin (OVA) as a model antigen, or equivalent doses of OVA-loaded into PSs, conjugated onto NPs, or given as a mixture of the two. Free CpG was used as an adjuvant. Antigen-loaded PSs induced enhanced frequencies of antigen-specific CD4+ T cells in the spleen, lymph nodes and lungs as compared to the NP formulation, whereas antigen-conjugated NPs induced stronger CD8+ T cell responses. Co-administration of both PSs and NPs elicited T cell immunity characteristic of the two nanocarriers at the same time, i.e. both strong CD4+ and CD8+ T cell responses. These results have important implications for particulate-based vaccine design and highlight the potential of using different antigen-delivery systems for the induction of both T helper and cytotoxic T lymphocyte immune responses.
Original language | English (US) |
---|---|
Pages (from-to) | 4339-4346 |
Number of pages | 8 |
Journal | Biomaterials |
Volume | 34 |
Issue number | 17 |
DOIs | |
State | Published - Jun 2013 |
Keywords
- Flow cytometry
- Immune response
- Immunomodulation
- Immunostimulation
- Nanoparticle
ASJC Scopus subject areas
- Mechanics of Materials
- Ceramics and Composites
- Bioengineering
- Biophysics
- Biomaterials