Abstract
Upgrading carbon dioxide to high-value multicarbon (C2+) products is one promising avenue for fuel and chemical production. Among all the monometallic catalysts, copper has attracted much attention because of its unique ability to convert CO2 or CO into C2+ products with an appreciable selectivity. Although numerous attempts have been made to synthesize Cu materials that expose the desired facets, it still remains a challenge to obtain high-quality nanostructured Cu catalysts for the electroreduction of CO2/CO. Here we report a facile synthesis of freestanding triangular-shaped two-dimensional Cu nanosheets that selectively expose the (111) surface. In a 2 M KOH electrolyte, the Cu nanosheets exhibit an acetate Faradaic efficiency of 48% with an acetate partial current density up to 131 mA cm−2 in electrochemical CO reduction. Further analysis suggest that the high acetate selectivity is attributed to the suppression of ethylene and ethanol formation, probably due to the reduction of exposed (100) and (110) surfaces.
Original language | English (US) |
---|---|
Pages (from-to) | 423-430 |
Number of pages | 8 |
Journal | Nature Catalysis |
Volume | 2 |
Issue number | 5 |
DOIs | |
State | Published - May 1 2019 |
Funding
The work is supported by the Department of Energy (USA) under Award no. DE-FE0029868 and the National Natural Science Foundation of China under Award nos 51601030 and 21773023. F.J., W.L., J.-J.L., M.J. and B.H.K. also thank the National Science Foundation Faculty Early Career Development program (Award no. CBET-1350911). Y.K. and X.F. acknowledge the support from International Institute for Nanotechnology (IIN) and Institute for Sustainability and Energy (ISEN) at Northwestern University. The theoretical calculation is supported by the Welch Foundation (Grant no. F-1959-20180324) and the startup grant from UT Austin, and used computational resources sponsored by the DOE\u2019s Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory, and the Texas Advanced Computing Center (TACC) at UT Austin. This work made use of the Electron Probe Instrumentation Center (EPIC) facility of Northwestern University\u2019s Atomic and Nanoscale Characterization Experimental Center (NUANCE), which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the Materials Research Science and Engineering Centers (MRSEC) program (NSF DMR-1121262) at the Materials Research Center; the IIN. This work made use of the J.B. Cohen X-Ray Diffraction Facility supported by MRSEC and SHyNE. The authors acknowledge D. Su (Brookhaven National Laboratory), X. Ye (Indiana University) and A. Petford-Long (Northwestern University) for help in the discussion. This research used resources at the 8-ID Beamline of the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract no. DE-SC0012704. The authors acknowledge E. Stavitski (8-ID Beamline, NSLS-II, Brookhaven National Laboratory) for assistance in the XAS measurements.
ASJC Scopus subject areas
- Catalysis
- Bioengineering
- Biochemistry
- Process Chemistry and Technology