TY - JOUR
T1 - Type Ia supernova discoveries at z > 1 from the hubble space telescope
T2 - Evidence for past deceleration and constraints on dark energy evolution
AU - Riess, Adam G.
AU - Sirolger, Louis Gregory
AU - Tonry, John
AU - Casertano, Stefano
AU - Ferguson, Henry C.
AU - Mobasher, Bahram
AU - Challis, Peter
AU - Filippenko, Alexei V.
AU - Jha, Saurabh
AU - Li, Weidong
AU - Chornock, Ryan
AU - Kirshner, Robert P.
AU - Leibundgut, Bruno
AU - Dickinson, Mark
AU - Livio, Mario
AU - Giavalisco, Mauro
AU - Steidel, Charles C.
AU - Benítez, Txitxo
AU - Tsvetanov, Zlatan
PY - 2004/6/1
Y1 - 2004/6/1
N2 - We have discovered 16 Type la supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of Ω M ≈ 0.3, Ω Λ ≈ 0.7 (χ dof 2 = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure Ω M = 0.29± 0.03 0.05 (equivalently, Ω Λ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02± 0.19 0.13 (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wpc 2. Joint constraints on both the recent equation of state of dark energy, w 0, and its time evolution, dw/dz, are a factor of ∼8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., W 0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.
AB - We have discovered 16 Type la supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of Ω M ≈ 0.3, Ω Λ ≈ 0.7 (χ dof 2 = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure Ω M = 0.29± 0.03 0.05 (equivalently, Ω Λ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02± 0.19 0.13 (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wpc 2. Joint constraints on both the recent equation of state of dark energy, w 0, and its time evolution, dw/dz, are a factor of ∼8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., W 0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.
KW - Cosmology: Observations
KW - Distance scale
KW - Galaxies: Distances and redshifts
KW - Supernovae: General
UR - http://www.scopus.com/inward/record.url?scp=3242674464&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3242674464&partnerID=8YFLogxK
U2 - 10.1086/383612
DO - 10.1086/383612
M3 - Article
AN - SCOPUS:3242674464
SN - 2041-8205
VL - 607
SP - 665
EP - 687
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2 I
ER -