Abstract
Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-Type silicon nanocrystals. The choice of optical excitation wavelength allows for selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective mass at high effective hole temperatures lead to a subpicosecond change of the dielectric function, resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27%, and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates subpicosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting the modulation of transmittance at telecommunications wavelengths. The results presented here show that doped silicon, particularly in micro-or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.
Original language | English (US) |
---|---|
Pages (from-to) | 6409-6414 |
Number of pages | 6 |
Journal | Nano letters |
Volume | 17 |
Issue number | 10 |
DOIs | |
State | Published - Oct 11 2017 |
Keywords
- Silicon photonics
- doping
- infrared
- optical switching
- plasmonics
ASJC Scopus subject areas
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanical Engineering