TY - JOUR
T1 - Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons
AU - Fernandez-Bravo, Angel
AU - Wang, Danqing
AU - Barnard, Edward S.
AU - Teitelboim, Ayelet
AU - Tajon, Cheryl
AU - Guan, Jun
AU - Schatz, George C.
AU - Cohen, Bruce E.
AU - Chan, Emory M.
AU - Schuck, P. James
AU - Odom, Teri W.
N1 - Funding Information:
This work was supported by the National Science Foundation (NSF) under DMR-1608258 and the Vannevar Bush Faculty Fellowship from DOD under N00014-17-1-3023. The work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. Portions of this research were supported by the Global Research Laboratory Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (grant no. 2016911815). The work used the Northwestern University Micro/ Nano Fabrication Facility, which is partially supported by Soft and Hybrid Nanotechnology Experimental Resource (grant no. NSF ECCS-1542205), the Materials Research Science and Engineering Center (grant no. DMR-1720139), and the State of Illinois and Northwestern University. A.T. was supported by the Weizmann Institute of Science—National Postdoctoral Award Program for Advancing Women in Science. We thank F. Scotognello for assistance with the ultrafast lasing measurements at the Molecular Foundry.
Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2019/11/1
Y1 - 2019/11/1
N2 - Miniaturized lasers are an emerging platform for generating coherent light for quantum photonics, in vivo cellular imaging, solid-state lighting and fast three-dimensional sensing in smartphones1–3. Continuous-wave lasing at room temperature is critical for integration with opto-electronic devices and optimal modulation of optical interactions4,5. Plasmonic nanocavities integrated with gain can generate coherent light at subwavelength scales6–9, beyond the diffraction limit that constrains mode volumes in dielectric cavities such as semiconducting nanowires10,11. However, insufficient gain with respect to losses and thermal instabilities in nanocavities has limited all nanoscale lasers to pulsed pump sources and/or low-temperature operation6–9,12–15. Here, we show continuous-wave upconverting lasing at room temperature with record-low thresholds and high photostability from subwavelength plasmons. We achieve selective, single-mode lasing from Yb3+/Er3+-co-doped upconverting nanoparticles conformally coated on Ag nanopillar arrays that support a single, sharp lattice plasmon cavity mode and greater than wavelength λ/20 field confinement in the vertical dimension. The intense electromagnetic near-fields localized in the vicinity of the nanopillars result in a threshold of 70 W cm−2, orders of magnitude lower than other small lasers. Our plasmon-nanoarray upconverting lasers provide directional, ultra-stable output at visible frequencies under near-infrared pumping, even after six hours of constant operation, which offers prospects in previously unrealizable applications of coherent nanoscale light.
AB - Miniaturized lasers are an emerging platform for generating coherent light for quantum photonics, in vivo cellular imaging, solid-state lighting and fast three-dimensional sensing in smartphones1–3. Continuous-wave lasing at room temperature is critical for integration with opto-electronic devices and optimal modulation of optical interactions4,5. Plasmonic nanocavities integrated with gain can generate coherent light at subwavelength scales6–9, beyond the diffraction limit that constrains mode volumes in dielectric cavities such as semiconducting nanowires10,11. However, insufficient gain with respect to losses and thermal instabilities in nanocavities has limited all nanoscale lasers to pulsed pump sources and/or low-temperature operation6–9,12–15. Here, we show continuous-wave upconverting lasing at room temperature with record-low thresholds and high photostability from subwavelength plasmons. We achieve selective, single-mode lasing from Yb3+/Er3+-co-doped upconverting nanoparticles conformally coated on Ag nanopillar arrays that support a single, sharp lattice plasmon cavity mode and greater than wavelength λ/20 field confinement in the vertical dimension. The intense electromagnetic near-fields localized in the vicinity of the nanopillars result in a threshold of 70 W cm−2, orders of magnitude lower than other small lasers. Our plasmon-nanoarray upconverting lasers provide directional, ultra-stable output at visible frequencies under near-infrared pumping, even after six hours of constant operation, which offers prospects in previously unrealizable applications of coherent nanoscale light.
UR - http://www.scopus.com/inward/record.url?scp=85074054116&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074054116&partnerID=8YFLogxK
U2 - 10.1038/s41563-019-0482-5
DO - 10.1038/s41563-019-0482-5
M3 - Letter
C2 - 31548631
AN - SCOPUS:85074054116
SN - 1476-1122
VL - 18
SP - 1172
EP - 1176
JO - Nature Materials
JF - Nature Materials
IS - 11
ER -