Uncertainties in seismic moment tensors inferred from differences between global catalogs

Boris Rösler*, Seth Stein, Bruce D. Spencer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Catalogs of moment tensors form the foundation for a wide variety of seismological studies. However, assessing uncertainties in the moment tensors and the quantities derived from them is difficult. To gain insight, we compare 5000 moment tensors in the U.S. Geological Survey (USGS) and the Global Centroid Moment Tensor (Global CMT) Project catalogs for November 2015-December 2020 and use the differences to illustrate the uncertainties. The differences are typically an order of magnitude larger than the reported errors, suggesting that the errors substantially underestimate the uncertainty. The catalogs are generally consistent, with intriguing differences. Global CMT generally reports larger scalar moments than USGS, with the difference decreasing with magnitude. This difference is larger than and of the opposite sign from what is expected due to the different definitions of the scalar moment. Instead, the differences are intrinsic to the tensors, presumably in part due to different phases used in the inversions. The differences in double-couple components of source mechanisms and the fault angles derived from them decrease with magnitude. Non-double-couple (NDC) components decrease somewhat with magnitude. These components are moderately correlated between catalogs, with correlations stronger for larger earthquakes. Hence, small earthquakes often show large NDC components, but many have large uncertainties and are likely to be artifacts of the inversion. Conversely, larger earthquakes are less likely to have large NDC components, but these components are typically robust between catalogs. If so, these can indicate either true deviation from a double couple or source complexity. The differences between catalogs in scalar moment, source geometry, or NDC fraction of individual earthquakes are essentially uncorrelated, suggesting that the differences reflect the inversion rather than the source process. Despite the differences in moment tensors, the location and depth of the centroids are consistent between catalogs. Our results apply to earthquakes after 2012, before which many moment tensors were common to both catalogs.

Original languageEnglish (US)
Pages (from-to)3698-3711
Number of pages14
JournalSeismological Research Letters
Issue number6
StatePublished - Nov 2021

ASJC Scopus subject areas

  • Geophysics


Dive into the research topics of 'Uncertainties in seismic moment tensors inferred from differences between global catalogs'. Together they form a unique fingerprint.

Cite this