Under The Firelight: Stellar Tracers of The Local Dark Matter Velocity Distribution In The Milky Way

Lina Necib, Mariangela Lisanti, Shea Garrison-Kimmel, Andrew Wetzel, Robyn Sanderson, Philip F. Hopkins, Claude André Faucher-Giguère, Dušan Kereš

Research output: Contribution to journalArticlepeer-review


The Gaia era opens new possibilities for discovering the remnants of disrupted satellite galaxies in the Solar neighborhood. If the population of local accreted stars is correlated with the dark matter sourced by the same mergers, one can then map the dark matter distribution directly. Using two cosmological zoom-in hydrodynamic simulations of Milky Way-mass galaxies from the Latte suite of Fire-2 simulations, we find a strong correlation between the velocity distribution of stars and dark matter at the solar circle that were accreted from luminous satellites. This correspondence holds for dark matter that is either relaxed or in kinematic substructure called debris flow, and is consistent between two simulated hosts with different merger histories. The correspondence is more problematic for streams because of possible spatial offsets between the dark matter and stars. We demonstrate how to reconstruct the dark matter velocity distribution from the observed properties of the accreted stellar population by properly accounting for the ratio of stars to dark matter contributed by individual mergers. After demonstrating this method using the Fire-2 simulations, we apply it to the Milky Way and use it to recover the dark matter velocity distribution associated with the recently discovered stellar debris field in the Solar neighborhood. Based on results from Gaia, we estimate that 42+2622% of the local dark matter that is accreted from luminous mergers is in debris flow.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Oct 29 2018

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Under The Firelight: Stellar Tracers of The Local Dark Matter Velocity Distribution In The Milky Way'. Together they form a unique fingerprint.

Cite this