Abstract
Strongly correlated perovskite oxides exhibit a plethera of intriguing phenomena and stimulate a great potential for multifunctional device applications. Utilizing tunable uniaxial strain, rather than biaxial or anisotropic strain, delivered from the crystallography of a single crystal substrate to modify the ground state of strongly correlated perovskite oxides has rarely been addressed for phase-space control. Here, we show that the physical properties of La2/3Ca1/3MnO3 (LCMO) films are remarkably different depending on the crystallographic orientations of the orthorhombic NdGaO3 (NGO) substrates. More importantly, the antiferromagnetic charge-ordered insulating (COI) phase induced in the (100) or (001)-oriented LCMO films can be dramatically promoted (or suppressed) by a uniaxial tensile (or compressive) bending stress along the in-plane [010] direction. By contrast, the COI phase is nearly unaffected along the other transverse in-plane directions. Results from scanning transmission electron microscopy reveal that the (100)-or (001)-oriented LCMO films are uniaxially tensile strained along the [010] direction, while the LCMO/NGO(010) and LCMO/NGO(110) films remaining as a bulklike ferromagnetic metallic state exhibit a different strain state. Density functional theory calculations further reveal that the cooperatively increased Jahn-Teller distortion and charge ordering may be indispensible for the inducing and promoting of the COI phase. These findings provide a path to understand the correlation between local and extended structural distortions imparted by coherent epitaxy and the electronic states for quantum phase engineering.
Original language | English (US) |
---|---|
Pages (from-to) | 1131-1140 |
Number of pages | 10 |
Journal | Nano letters |
Volume | 20 |
Issue number | 2 |
DOIs | |
State | Published - Feb 12 2020 |
Keywords
- density functional theory calculations
- manganite thin films
- phase separation
- scanning transmission electron microscopy
- uniaxial strain engineering
ASJC Scopus subject areas
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanical Engineering