TY - JOUR
T1 - Unity and diversity in mixing
T2 - Stretching, diffusion, breakup, and aggregation in chaotic flows
AU - Ottino, J. M.
PY - 1991
Y1 - 1991
N2 - Experiments and theory have produced a reasonably good qualitative understanding of the evolution of chaotic mixing of passive tracers, especially in two-dimensional time-periodic flow fields. Such an understanding forms a fabric for the evolution of breakup, aggregation, and diffusion-controlled reactions in more complex flows. These systems can be viewed as a population of "microstructures" whose behavior is dictated by iterations of a chaotic flow; microstructures break, diffuse, and aggregate, causing the population to evolve in space and time. This paper presents simple physical models for such processes. Self-similarity is common to all the problems; examples arise in the context of the distribution of stretchings within chaotic flows, in the asymptotic evolution of diffusion-reaction processes at striation thickness scales, in the equilibrium distribution of drop sizes generated upon mixing of immiscible fluids, in the equations describing mean-field kinetics of coagulation, in the sequence of actions necessary for the destruction of islands in two-dimensional flow, and in the fractal structure of clusters produced upon aggregation in chaotic flows.
AB - Experiments and theory have produced a reasonably good qualitative understanding of the evolution of chaotic mixing of passive tracers, especially in two-dimensional time-periodic flow fields. Such an understanding forms a fabric for the evolution of breakup, aggregation, and diffusion-controlled reactions in more complex flows. These systems can be viewed as a population of "microstructures" whose behavior is dictated by iterations of a chaotic flow; microstructures break, diffuse, and aggregate, causing the population to evolve in space and time. This paper presents simple physical models for such processes. Self-similarity is common to all the problems; examples arise in the context of the distribution of stretchings within chaotic flows, in the asymptotic evolution of diffusion-reaction processes at striation thickness scales, in the equilibrium distribution of drop sizes generated upon mixing of immiscible fluids, in the equations describing mean-field kinetics of coagulation, in the sequence of actions necessary for the destruction of islands in two-dimensional flow, and in the fractal structure of clusters produced upon aggregation in chaotic flows.
UR - http://www.scopus.com/inward/record.url?scp=0002143763&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0002143763&partnerID=8YFLogxK
U2 - 10.1063/1.858020
DO - 10.1063/1.858020
M3 - Article
AN - SCOPUS:0002143763
SN - 0899-8213
VL - 3
SP - 1417
EP - 1430
JO - Physics of Fluids A
JF - Physics of Fluids A
IS - 5
ER -