TY - JOUR
T1 - Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 γ 2 correlates with the invasiveness of human glioma
AU - Quo, Ping
AU - Imanishi, Yorihisa
AU - Cackowski, Frank C.
AU - Jarzynka, Michael J.
AU - Tao, Huo Quan
AU - Nishikawa, Ryo
AU - Hirose, Takanori
AU - Hu, Bo
AU - Cheng, Shi Yuan
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2005/3
Y1 - 2005/3
N2 - Diffuse infiltration of malignant human glioma cells into surrounding brain structures occurs through the activation of multigenic programs. We recently showed that angiopoietin-2 (Ang2) induces glioma invasion through the activation of matrix metalloprotease-2 (MMP-2). Here, we report that up-regulation of Ang2, MMP-2, membrane type 1-MMP (MT1-MMP), and laminin 5 γ 2 (LN 5 γ 2) in tumor cells correlates with glioma invasion. Analyses of 57 clinical human glioma biopsies of World Health Organization grade I to IV tumors displaying a distinct invasive edge and 39 glioma specimens that only contain the central region of the tumor showed that Ang2, MMP-2, MT1-MMP, and LN 5 γ 2 were co-overexpressed in invasive areas but not in the central regions of the glioma tissues. Statistical analyses revealed a significant link between the preferential expression of these molecules and invasiveness. Protein analyses of microdissected primary glioma tissue showed up-regulation and activation of MT1-MMP and LN 5 γ 2 at the invasive edge of the tumors, supporting this observation. Concordantly, in human U87MG glioma xenografts engineered to express Ang2, increased expression of MT1-MMP and LN 5 γ 2, along with MMP-2 up-regulation, in actively invading glioma cells was also evident. In cell culture, stimulation of glioma cells by overexpressing Ang2 or exposure to exogenous Ang2 promoted the expression and activation of MMP-2, MT1-MMP, and LN 5 γ 2. These results suggest that up-regulation of Ang2, MMP-2, MT1-MMP, and LN 5 γ 2 is associated with the invasiveness displayed by human gliomas and that induction of these molecules by Ang2 may be essential for glioma invasion.
AB - Diffuse infiltration of malignant human glioma cells into surrounding brain structures occurs through the activation of multigenic programs. We recently showed that angiopoietin-2 (Ang2) induces glioma invasion through the activation of matrix metalloprotease-2 (MMP-2). Here, we report that up-regulation of Ang2, MMP-2, membrane type 1-MMP (MT1-MMP), and laminin 5 γ 2 (LN 5 γ 2) in tumor cells correlates with glioma invasion. Analyses of 57 clinical human glioma biopsies of World Health Organization grade I to IV tumors displaying a distinct invasive edge and 39 glioma specimens that only contain the central region of the tumor showed that Ang2, MMP-2, MT1-MMP, and LN 5 γ 2 were co-overexpressed in invasive areas but not in the central regions of the glioma tissues. Statistical analyses revealed a significant link between the preferential expression of these molecules and invasiveness. Protein analyses of microdissected primary glioma tissue showed up-regulation and activation of MT1-MMP and LN 5 γ 2 at the invasive edge of the tumors, supporting this observation. Concordantly, in human U87MG glioma xenografts engineered to express Ang2, increased expression of MT1-MMP and LN 5 γ 2, along with MMP-2 up-regulation, in actively invading glioma cells was also evident. In cell culture, stimulation of glioma cells by overexpressing Ang2 or exposure to exogenous Ang2 promoted the expression and activation of MMP-2, MT1-MMP, and LN 5 γ 2. These results suggest that up-regulation of Ang2, MMP-2, MT1-MMP, and LN 5 γ 2 is associated with the invasiveness displayed by human gliomas and that induction of these molecules by Ang2 may be essential for glioma invasion.
UR - http://www.scopus.com/inward/record.url?scp=14644399862&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=14644399862&partnerID=8YFLogxK
U2 - 10.1016/s0002-9440(10)62308-5
DO - 10.1016/s0002-9440(10)62308-5
M3 - Article
C2 - 15743799
AN - SCOPUS:14644399862
VL - 166
SP - 877
EP - 890
JO - American Journal of Pathology
JF - American Journal of Pathology
SN - 0002-9440
IS - 3
ER -