Using Machine Learning to Predict Hyperchloremia in Critically Ill Patients

Pete Yeh, Yiheng Pan, L. Nelson Sanchez-Pinto*, Yuan Luo

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Elevated serum chloride levels (hyperchloremia) and the administration of intravenous (IV) fluids with high chloride content have both been associated with increased morbidity and mortality in certain subgroups of critically ill patients, such as those with sepsis. Here, we demonstrate this association in a general intensive care unit (ICU) population using data from the Medical Information Mart for Intensive Care III (MIMIC-III) database and propose the use of supervised learning to predict hyperchloremia in critically ill patients. Clinical variables from records of the first 24h of adult ICU stays were represented as features for four predictive supervised learning classifiers. The best performing model was able to predict second-day hyperchloremia with an AUC of 0.80 and a ratio of 5 false alerts for every true alert, which is a clinically-actionable rate. Our results suggest that clinicians can be effectively alerted to patients at risk of developing hyperchloremia, providing an opportunity to mitigate this risk and potentially improve outcomes.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019
EditorsIllhoi Yoo, Jinbo Bi, Xiaohua Tony Hu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1703-1707
Number of pages5
ISBN (Electronic)9781728118673
DOIs
StatePublished - Nov 2019
Event2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 - San Diego, United States
Duration: Nov 18 2019Nov 21 2019

Publication series

NameProceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019

Conference

Conference2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019
Country/TerritoryUnited States
CitySan Diego
Period11/18/1911/21/19

Funding

This research is partly supported by the NIH/NLM (R21LM012618, Luo). ACKNOWLEDGMENTS This research is partly supported by the NIH/NLM (R21LM012618, Luo).

Keywords

  • biomedical informatics
  • decision support systems
  • electronic healthcare
  • machine learning
  • predictive models

ASJC Scopus subject areas

  • Biochemistry
  • Biotechnology
  • Molecular Medicine
  • Modeling and Simulation
  • Health Informatics
  • Pharmacology (medical)
  • Public Health, Environmental and Occupational Health

Fingerprint

Dive into the research topics of 'Using Machine Learning to Predict Hyperchloremia in Critically Ill Patients'. Together they form a unique fingerprint.

Cite this