Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes

Sung Hun Jin, Simon N. Dunham, Jizhou Song, Xu Xie, Ji Hun Kim, Chaofeng Lu, Ahmad Islam, Frank Du, Jaeseong Kim, Johnny Felts, Yuhang Li, Feng Xiong, Muhammad A. Wahab, Monisha Menon, Eugene Cho, Kyle L. Grosse, Dong Joon Lee, Ha Uk Chung, Eric Pop, Muhammad A. AlamWilliam P. King, Yonggang Huang, John A. Rogers

Research output: Contribution to journalArticlepeer-review

160 Scopus citations

Abstract

Among the remarkable variety of semiconducting nanomaterials that have been discovered over the past two decades, single-walled carbon nanotubes remain uniquely well suited for applications in high-performance electronics, sensors and other technologies. The most advanced opportunities demand the ability to form perfectly aligned, horizontal arrays of purely semiconducting, chemically pristine carbon nanotubes. Here, we present strategies that offer this capability. Nanoscale thermocapillary flows in thin-film organic coatings followed by reactive ion etching serve as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous aligned arrays grown on quartz substrates. The low temperatures and unusual physics associated with this process enable robust, scalable operation, with clear potential for practical use. We carry out detailed experimental and theoretical studies to reveal all of the essential attributes of the underlying thermophysical phenomena. We demonstrate use of the purified arrays in transistors that achieve mobilities exceeding 1,000 cm 2 V-1 s-1 and on/off switching ratios of ∼10,000 with current outputs in the milliamp range. Simple logic gates built using such devices represent the first steps toward integration into more complex circuits.

Original languageEnglish (US)
Pages (from-to)347-355
Number of pages9
JournalNature nanotechnology
Volume8
Issue number5
DOIs
StatePublished - May 2013

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Electrical and Electronic Engineering
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes'. Together they form a unique fingerprint.

Cite this