@inproceedings{6988c7251efb440c8a907324d44eaa79,
title = "Using WordNet to disambiguate word senses for text classification",
abstract = "In this paper, we propose an automatic text classification method based on word sense disambiguation. We use {"}hood{"} algorithm to remove the word ambiguity so that each word is replaced by its sense in the context. The nearest ancestors of the senses of all the non-stopwords in a give document are selected as the classes for the given document. We apply our algorithm to Brown Corpus. The effectiveness is evaluated by comparing the classification results with the classification results using manual disambiguation offered by Princeton University.",
keywords = "Disambiguation, Text classification, Word sense, WordNet",
author = "Ying Liu and Peter Scheuermann and Xingsen Li and Xingquan Zhu",
year = "2007",
doi = "10.1007/978-3-540-72588-6_127",
language = "English (US)",
isbn = "9783540725879",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
number = "PART 3",
pages = "781--789",
booktitle = "Computational Science - ICCS 2007 - 7th International Conference, Proceedings",
edition = "PART 3",
note = "7th International Conference on Computational Science, ICCS 2007 ; Conference date: 27-05-2007 Through 30-05-2007",
}