Validating Dynamic Engineering Models under Uncertainty

Zequn Wang, Yan Fu, Ren Jye Yang, Saeed Barbat, Wei Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Validating dynamic engineering models is critically important in practical applications by assessing the agreement between simulation results and experimental observations. Though significant progresses have been made, the existing metrics lack the capability of managing uncertainty in both simulations and experiments. In addition, it is challenging to validate a dynamic model aggregately over both the time domain and a model input space with data at multiple validation sites. To overcome these difficulties, this paper presents an area-based metric to systemically handle uncertainty and validate computational models for dynamic systems over an input space by simultaneously integrating the information from multiple validation sites. To manage the complexity associated with a high-dimensional data space, eigenanalysis is performed for the time series data from simulations at each validation site to extract the important features. A truncated Karhunen-Loève (KL) expansion is then constructed to represent the responses of dynamic systems, resulting in a set of uncorrelated random coefficients with unit variance. With the development of a hierarchical data-fusion strategy, probability integral transform (PIT) is then employed to pool all the resulting random coefficients from multiple validation sites across the input space into a single aggregated metric. The dynamic model is thus validated by calculating the cumulative area difference of the cumulative density functions. The proposed model validation metric for dynamic systems is illustrated with a mathematical example, a supported beam problem with stochastic loads, and real data from the vehicle occupant-restraint system.

Original languageEnglish (US)
Article number111402
JournalJournal of Mechanical Design, Transactions of the ASME
Volume138
Issue number11
DOIs
StatePublished - Nov 1 2016

Keywords

  • area-based metric
  • dynamic system
  • model validation
  • multiple validation sites
  • uncertainty management

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Validating Dynamic Engineering Models under Uncertainty'. Together they form a unique fingerprint.

Cite this