Validation of FD-TD Modeling of the Radar Cross Section of Three-Dimensional Structures Spanning Up to Nine Wavelengths

Allen Taflove, Korada R. Umashankar, Thomas G. Jurgens

Research output: Contribution to journalArticle

53 Scopus citations

Abstract

The first experimental validation is reported of the finite difference time-domain (FD-TD) method for modeling the monostatic radar cross section (RCS) of three-dimensional conducting structures. The structures modeled and tested span up to nine free-space wavelengths (kos = 57). This represents a thirty-fold increase in electrical size over the previous analytically validated case of FD-TD modeling of radar cross section. It appears that the cases studied represent the largest detailed three-dimensional numerical scattering models of any type ever verified wherein a uniformly fine spatial resolution and the ability to treat nonmetallic composition is incorporated in the model. It was found that FD-TD provided a high modeling accuracy of 1 dB (with respect to the measurements) over at least a 40-dB dynamic range of radar cross section values for the nine-wavelength size objects, which exhibited such scattering physics as edge and corner diffraction, corner reflection (double bounce), and cavity penetration.

Original languageEnglish (US)
Pages (from-to)662-666
Number of pages5
JournalIEEE Transactions on Antennas and Propagation
Volume33
Issue number6
DOIs
StatePublished - Jan 1 1985

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Validation of FD-TD Modeling of the Radar Cross Section of Three-Dimensional Structures Spanning Up to Nine Wavelengths'. Together they form a unique fingerprint.

  • Cite this