TY - JOUR
T1 - Valproic acid for the treatment of hemorrhagic shock
T2 - A dose-optimization study
AU - Hwabejire, John O.
AU - Lu, Jennifer
AU - Liu, Baoling
AU - Li, Yongqing
AU - Halaweish, Ihab
AU - Alam, Hasan B.
N1 - Funding Information:
Funded by a grant from the Office of Naval Research ( N000140910378 ; PI: H.B.A.) and NIH ( R01 GM084127 ; PI: H.B.A.).
PY - 2014/1
Y1 - 2014/1
N2 - Background Valproic acid (VPA) has been shown to improve survival in animal models of hemorrhagic shock at a dose of 300 mg/kg. Our aim was to identify the ideal dose through dose-escalation, split-dosing, and dose de-escalation regimens. Materials and methods Rats were subjected to sublethal 40% hemorrhage and treated with vehicle or VPA (dose of 300, 400, or 450 mg/kg) after 30 min of shock. Acetylated histones and activated proteins from the PI3K-Akt-GSK-3β survival pathway at different time points were quantified by Western blot analysis. In a similar model, a VPA dose of 200 mg/kg followed 2 h later by another dose of 100 mg/kg was administered. Finally, animals were subjected to a lethal 50% hemorrhage and VPA was administered in a dose de-escalation manner (starting at dose of 300 mg/kg) until a significant drop in percent survival was observed. Results Larger doses of VPA resulted in greater acetylation of histone 3 and increased activation of PI3K pathway proteins. Dose-dependent differences were significant in histone acetylation but not in the activation of the survival pathway proteins. Split-dose administration of VPA resulted in similar results to a single full dose. Survival was as follows: 87.5% with 300 and 250 mg/kg of VPA, 50% with 200 mg/kg of VPA, and 14% with vehicle-treated animals. Conclusions Although higher doses of VPA result in greater histone acetylation and activation of prosurvival protein signaling, doses as low as 250 mg/kg of VPA confer the same survival advantage in lethal hemorrhagic shock. Also, VPA can be given in a split-dose fashion without a reduction in its cytoprotective effectiveness.
AB - Background Valproic acid (VPA) has been shown to improve survival in animal models of hemorrhagic shock at a dose of 300 mg/kg. Our aim was to identify the ideal dose through dose-escalation, split-dosing, and dose de-escalation regimens. Materials and methods Rats were subjected to sublethal 40% hemorrhage and treated with vehicle or VPA (dose of 300, 400, or 450 mg/kg) after 30 min of shock. Acetylated histones and activated proteins from the PI3K-Akt-GSK-3β survival pathway at different time points were quantified by Western blot analysis. In a similar model, a VPA dose of 200 mg/kg followed 2 h later by another dose of 100 mg/kg was administered. Finally, animals were subjected to a lethal 50% hemorrhage and VPA was administered in a dose de-escalation manner (starting at dose of 300 mg/kg) until a significant drop in percent survival was observed. Results Larger doses of VPA resulted in greater acetylation of histone 3 and increased activation of PI3K pathway proteins. Dose-dependent differences were significant in histone acetylation but not in the activation of the survival pathway proteins. Split-dose administration of VPA resulted in similar results to a single full dose. Survival was as follows: 87.5% with 300 and 250 mg/kg of VPA, 50% with 200 mg/kg of VPA, and 14% with vehicle-treated animals. Conclusions Although higher doses of VPA result in greater histone acetylation and activation of prosurvival protein signaling, doses as low as 250 mg/kg of VPA confer the same survival advantage in lethal hemorrhagic shock. Also, VPA can be given in a split-dose fashion without a reduction in its cytoprotective effectiveness.
KW - Dose optimization
KW - Hemorrhagic shock
KW - Histone deacetylase inhibitors
KW - Valproic acid
UR - http://www.scopus.com/inward/record.url?scp=84890129242&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84890129242&partnerID=8YFLogxK
U2 - 10.1016/j.jss.2013.09.016
DO - 10.1016/j.jss.2013.09.016
M3 - Article
C2 - 24135375
AN - SCOPUS:84890129242
SN - 0022-4804
VL - 186
SP - 363
EP - 370
JO - Journal of Surgical Research
JF - Journal of Surgical Research
IS - 1
ER -