TY - JOUR
T1 - Variant-specific inflation factors for assessing population stratification at the phenotypic variance level
AU - NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
AU - Sofer, Tamar
AU - Zheng, Xiuwen
AU - Laurie, Cecelia A.
AU - Gogarten, Stephanie M.
AU - Brody, Jennifer A.
AU - Conomos, Matthew P.
AU - Bis, Joshua C.
AU - Thornton, Timothy A.
AU - Szpiro, Adam
AU - O’Connell, Jeffrey R.
AU - Lange, Ethan M.
AU - Gao, Yan
AU - Cupples, L. Adrienne
AU - Psaty, Bruce M.
AU - Abe, Namiko
AU - Abecasis, Gonçalo
AU - Aguet, Francois
AU - Albert, Christine
AU - Almasy, Laura
AU - Alonso, Alvaro
AU - Ament, Seth
AU - Anderson, Peter
AU - Anugu, Pramod
AU - Applebaum-Bowden, Deborah
AU - Ardlie, Kristin
AU - Arking, Dan
AU - Arnett, Donna K.
AU - Ashley-Koch, Allison
AU - Aslibekyan, Stella
AU - Assimes, Tim
AU - Auer, Paul
AU - Avramopoulos, Dimitrios
AU - Ayas, Najib
AU - Balasubramanian, Adithya
AU - Barnard, John
AU - Barnes, Kathleen
AU - Barr, R. Graham
AU - Barron-Casella, Emily
AU - Barwick, Lucas
AU - Beaty, Terri
AU - Beck, Gerald
AU - Becker, Diane
AU - Becker, Lewis
AU - Beer, Rebecca
AU - Beitelshees, Amber
AU - Benjamin, Emelia
AU - Benos, Takis
AU - Bezerra, Marcos
AU - Bielak, Larry
AU - Ratan, Aakrosh
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12/1
Y1 - 2021/12/1
N2 - In modern Whole Genome Sequencing (WGS) epidemiological studies, participant-level data from multiple studies are often pooled and results are obtained from a single analysis. We consider the impact of differential phenotype variances by study, which we term ‘variance stratification’. Unaccounted for, variance stratification can lead to both decreased statistical power, and increased false positives rates, depending on how allele frequencies, sample sizes, and phenotypic variances vary across the studies that are pooled. We develop a procedure to compute variant-specific inflation factors, and show how it can be used for diagnosis of genetic association analyses on pooled individual level data from multiple studies. We describe a WGS-appropriate analysis approach, implemented in freely-available software, which allows study-specific variances and thereby improves performance in practice. We illustrate the variance stratification problem, its solutions, and the proposed diagnostic procedure, in simulations and in data from the Trans-Omics for Precision Medicine Whole Genome Sequencing Program (TOPMed), used in association tests for hemoglobin concentrations and BMI.
AB - In modern Whole Genome Sequencing (WGS) epidemiological studies, participant-level data from multiple studies are often pooled and results are obtained from a single analysis. We consider the impact of differential phenotype variances by study, which we term ‘variance stratification’. Unaccounted for, variance stratification can lead to both decreased statistical power, and increased false positives rates, depending on how allele frequencies, sample sizes, and phenotypic variances vary across the studies that are pooled. We develop a procedure to compute variant-specific inflation factors, and show how it can be used for diagnosis of genetic association analyses on pooled individual level data from multiple studies. We describe a WGS-appropriate analysis approach, implemented in freely-available software, which allows study-specific variances and thereby improves performance in practice. We illustrate the variance stratification problem, its solutions, and the proposed diagnostic procedure, in simulations and in data from the Trans-Omics for Precision Medicine Whole Genome Sequencing Program (TOPMed), used in association tests for hemoglobin concentrations and BMI.
UR - http://www.scopus.com/inward/record.url?scp=85107746519&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85107746519&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-23655-2
DO - 10.1038/s41467-021-23655-2
M3 - Article
C2 - 34108454
AN - SCOPUS:85107746519
SN - 2041-1723
VL - 12
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 3506
ER -