Virus membrane fusion proteins: Biological machines that undergo a metamorphosis

R. Ellis Dutch, T. S. Jardetzky, R. A. Lamb*

*Corresponding author for this work

Research output: Contribution to journalShort survey

101 Scopus citations

Abstract

Fusion proteins from a group of widely disparate viruses, including the paramyxovirus F protein, the HIV and SIV gp160 proteins, the retroviral Env protein, the Ebola virus Gp, and the influenza virus haemagglutinin, share a number of common features. All contain multiple glycosylation sites, and must be trimeric and undergo proteolytic cleavage to be fusogenically active. Subsequent to proteolytic cleavage, the subunit containing the transmembrane domain in each case has an extremely hydrophobic region, termed the fusion peptide, or at near its newly generated N-terminus. In addition, all of these viral fusion proteins have 4-3 heptad repeat sequences near both the fusion peptide and the transmembrane domain. These regions have been demonstrated from a tight complex, in which the N-terminal heptad repeat forms a trimeric-coiled coil, with the C-terminal heptad repeat forming helical regions that buttress the coiled-coil in an anti-parallel manner. The significance of each of these structural elements in the processing and function of these viral fusion proteins is discussed.

Original languageEnglish (US)
Pages (from-to)597-612
Number of pages16
JournalBioscience Reports
Volume20
Issue number6
DOIs
StatePublished - Dec 1 2000

Keywords

  • Fusion peptides
  • Glycosylation
  • Heptad repeats
  • Membrane fusion
  • Oligomerization
  • Proteolytic processing
  • Viral glycoprotein

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Virus membrane fusion proteins: Biological machines that undergo a metamorphosis'. Together they form a unique fingerprint.

  • Cite this