Visualizing interfacial charge transfer in Ru-dye-sensitized TiO 2 nanoparticles using X-ray transient absorption spectroscopy

Xiaoyi Zhang*, Grigory Smolentsev, Jianchang Guo, Klaus Attenkofer, Chuck Kurtz, Guy Jennings, Jenny V. Lockard, Andrew B. Stickrath, Lin X. Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

63 Scopus citations


A molecular level understanding of the structural reorganization accompanying interfacial electron transfer is important for rational design of solar cells. Here we have applied XTA (X-ray transient absorption) spectroscopy to study transient structures in a heterogeneous interfacial system mimicking the charge separation process in dye-sensitized solar cell (DSSC) with Ru(dcbpy)2(NCS)2 (RuN3) dye adsorbed to TiO2 nanoparticle surfaces. The results show that the average Ru-NCS bond length reduces by 0.06 Å, whereas the average Ru-N(dcbpy) bond length remains nearly unchanged after the electron injection. The differences in bond-order change and steric hindrance between two types of ligands are attributed to their structural response in the charge separation. This study extends the application of XTA into optically opaque hybrid interfacial systems relevant to the solar energy conversion.

Original languageEnglish (US)
Pages (from-to)628-632
Number of pages5
JournalJournal of Physical Chemistry Letters
Issue number6
StatePublished - Mar 17 2011

ASJC Scopus subject areas

  • Materials Science(all)
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Visualizing interfacial charge transfer in Ru-dye-sensitized TiO <sub>2</sub> nanoparticles using X-ray transient absorption spectroscopy'. Together they form a unique fingerprint.

Cite this