TY - JOUR
T1 - Volatility by Design. Synthesis and Characterization of Polyether Adducts of Bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)barium and Their Implementation as Metal-Organic Chemical Vapor Deposition Precursors
AU - Belot, John A.
AU - Neumayer, Deborah A.
AU - Reedy, Charles J.
AU - Studebaker, Daniel B.
AU - Hinds, Bruce J.
AU - Stern, Charlotte L.
AU - Marks, Tobin Jay
PY - 1997/1/1
Y1 - 1997/1/1
N2 - The synthesis and characterization of a series of polyethers and volatile, low-melting polyether complexes of bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)barium having the general formula Ba(hfa)2·RO(CH2CH2O)nR′ where R = R′ = CH3, n = 3; R = CH3, R′ = C2H5, n = 3; R = R′ = H, n = 5, 6; R = R′ = CH3, n = 4; R = CH3, R′ = C2H5, n = 5; R = CH3, R′ = n-C4H9, n = 5, 6; R = CH3, R = C5H11O, n = 3; R = CH3, R′ = n-C6H13, n = 4, 5; R = C2H5, R′ = n-C4H9, n = 5; R = n-C4H9, R′ = n-C4H9, n = 4, 6; R = n-C4H9, R′ = n-C6H13, n = 5 are reported. The complexes are conveniently synthesized by reaction of n-propylammonium+-hfa- in DMF with an aqueous solution of Ba(NO3)2 and the polyether or, alternatively, by reaction of the polyether with Ba(hfa)2 in toluene. These new complexes were characterized by elemental analysis, FT-IR, 1H, 13C, and 19F NMR, MS, X-ray diffraction (Ba(hfa)2·CH3O(CH2-CH2O) 3CH3·H2O, Ba(hfa)2-CH3O(CH2CH2O) 5C2H5), and thermogravimetric analysis. The melting points of the complexes are strongly dependent on the architecture of the polyether chain and dimensions of the terminal polyether substituent, with the lowest melting points corresponding to the longest polyethers having the largest terminal groups. The volatility of the Ba(hfa)2·polyether compounds is dependent on molecular weight and molecular structure; however, there is little direct correlation between melting point depression and enhanced volatility. The applicability of these complexes in metal-organic chemical vapor deposition is demonstrated by the successful growth of phase-pure BaTiO3 thin films using Ba(hfa)2·CH3O(CH2CH2O) 5C2H5 as the Ba source. Phase composition and epitaxy in these films is analyzed by energy-dispersive X-ray spectroscopy and X-ray diffraction Θ-2Θ, ω, and φ scans.
AB - The synthesis and characterization of a series of polyethers and volatile, low-melting polyether complexes of bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)barium having the general formula Ba(hfa)2·RO(CH2CH2O)nR′ where R = R′ = CH3, n = 3; R = CH3, R′ = C2H5, n = 3; R = R′ = H, n = 5, 6; R = R′ = CH3, n = 4; R = CH3, R′ = C2H5, n = 5; R = CH3, R′ = n-C4H9, n = 5, 6; R = CH3, R = C5H11O, n = 3; R = CH3, R′ = n-C6H13, n = 4, 5; R = C2H5, R′ = n-C4H9, n = 5; R = n-C4H9, R′ = n-C4H9, n = 4, 6; R = n-C4H9, R′ = n-C6H13, n = 5 are reported. The complexes are conveniently synthesized by reaction of n-propylammonium+-hfa- in DMF with an aqueous solution of Ba(NO3)2 and the polyether or, alternatively, by reaction of the polyether with Ba(hfa)2 in toluene. These new complexes were characterized by elemental analysis, FT-IR, 1H, 13C, and 19F NMR, MS, X-ray diffraction (Ba(hfa)2·CH3O(CH2-CH2O) 3CH3·H2O, Ba(hfa)2-CH3O(CH2CH2O) 5C2H5), and thermogravimetric analysis. The melting points of the complexes are strongly dependent on the architecture of the polyether chain and dimensions of the terminal polyether substituent, with the lowest melting points corresponding to the longest polyethers having the largest terminal groups. The volatility of the Ba(hfa)2·polyether compounds is dependent on molecular weight and molecular structure; however, there is little direct correlation between melting point depression and enhanced volatility. The applicability of these complexes in metal-organic chemical vapor deposition is demonstrated by the successful growth of phase-pure BaTiO3 thin films using Ba(hfa)2·CH3O(CH2CH2O) 5C2H5 as the Ba source. Phase composition and epitaxy in these films is analyzed by energy-dispersive X-ray spectroscopy and X-ray diffraction Θ-2Θ, ω, and φ scans.
UR - http://www.scopus.com/inward/record.url?scp=0001716719&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001716719&partnerID=8YFLogxK
U2 - 10.1021/cm9700108
DO - 10.1021/cm9700108
M3 - Article
AN - SCOPUS:0001716719
SN - 0897-4756
VL - 9
SP - 1638
EP - 1648
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 7
ER -