TY - JOUR
T1 - Vortices with linear cores in mathematical models of excitable media
AU - Krinsky, Valentin I.
AU - Efimov, Igor R.
PY - 1992/9/1
Y1 - 1992/9/1
N2 - Most naturally occurring excitable media exhibit vortices in the form of spirals rotating around circular cores. Here we demonstrate that quite another type of vortices - vortices whose cores resemble a long line - may result from decreasing a small parameter in the different mathematical models of excitable media (general reaction-diffusion model, Fitz-Hugh-Nagumo equations, Beeler-Reuter model of cardiac tissue, Wiener axiomatic model, and cellular automata model).
AB - Most naturally occurring excitable media exhibit vortices in the form of spirals rotating around circular cores. Here we demonstrate that quite another type of vortices - vortices whose cores resemble a long line - may result from decreasing a small parameter in the different mathematical models of excitable media (general reaction-diffusion model, Fitz-Hugh-Nagumo equations, Beeler-Reuter model of cardiac tissue, Wiener axiomatic model, and cellular automata model).
UR - http://www.scopus.com/inward/record.url?scp=0002828226&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0002828226&partnerID=8YFLogxK
U2 - 10.1016/0378-4371(92)90252-L
DO - 10.1016/0378-4371(92)90252-L
M3 - Article
AN - SCOPUS:0002828226
SN - 0378-4371
VL - 188
SP - 55
EP - 60
JO - Physica A: Statistical Mechanics and its Applications
JF - Physica A: Statistical Mechanics and its Applications
IS - 1-3
ER -