TY - JOUR
T1 - Well-defined, supported epoxidation catalysts from molecular precursors
AU - Notestein, Justin M.
AU - Morlanes-Sanchez, Natalia
AU - Schoenfeldt, Nicholas
AU - Korinda, Andrew
AU - Meyer, Randall
AU - Ni, Zhenjuan
PY - 2011
Y1 - 2011
N2 - Supported oxides are ubiquitous heterogeneous catalysts, and synthetic control over oxide domains offers to improve our understanding of mechanisms at the atomic level and ultimately to control catalyst activities and selectivities. Two routes are presented to well-defined, supported oxides utilizing precursor inorganic complexes with some of the desired atomic connectivity built in. In the first, calixarene-Ta complexes are synthesized and grafted to SiO 2 for a one-pot route to ligand-capped, isolated sites. These catalysts have higher direct epoxidation selectivity for cyclohexene and less H 2O 2 decomposition than their bare oxide analogues. Epoxide hydrolysis can be lessened by simple capping with octanol. In the second, triazacyclononane manganese oxide catalysts are supported on functionalized surfaces for alkene epoxidation / dihydroxylation. These reactions occur at <25°C and epoxidation vs. dihydroxylation selectivity is controlled by the supported co-catalyst. Spectroscopic (principally XAS and UV-vis) and mechanistic studies give additional insight.
AB - Supported oxides are ubiquitous heterogeneous catalysts, and synthetic control over oxide domains offers to improve our understanding of mechanisms at the atomic level and ultimately to control catalyst activities and selectivities. Two routes are presented to well-defined, supported oxides utilizing precursor inorganic complexes with some of the desired atomic connectivity built in. In the first, calixarene-Ta complexes are synthesized and grafted to SiO 2 for a one-pot route to ligand-capped, isolated sites. These catalysts have higher direct epoxidation selectivity for cyclohexene and less H 2O 2 decomposition than their bare oxide analogues. Epoxide hydrolysis can be lessened by simple capping with octanol. In the second, triazacyclononane manganese oxide catalysts are supported on functionalized surfaces for alkene epoxidation / dihydroxylation. These reactions occur at <25°C and epoxidation vs. dihydroxylation selectivity is controlled by the supported co-catalyst. Spectroscopic (principally XAS and UV-vis) and mechanistic studies give additional insight.
UR - http://www.scopus.com/inward/record.url?scp=84861031493&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861031493&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:84861031493
SN - 0065-7727
JO - ACS National Meeting Book of Abstracts
JF - ACS National Meeting Book of Abstracts
T2 - 242nd ACS National Meeting and Exposition
Y2 - 28 August 2011 through 1 September 2011
ER -