TY - JOUR
T1 - White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson disease
AU - Bledsoe, Ian O.
AU - Stebbins, Glenn T.
AU - Merkitch, Doug
AU - Goldman, Jennifer G
N1 - Funding Information:
Dr. Goldman and this research were supported by NIH K23NS060949 and the Parkinson’s Disease Foundation. The Rush University Section of Parkinson Disease and Movement Disorders is supported by a center grant from the Parkinson’s Disease Foundation.
Publisher Copyright:
© 2018 American Academy of Neurology.
PY - 2018/12/11
Y1 - 2018/12/11
N2 - Objective To evaluate microstructural characteristics of the corpus callosum using diffusion tensor imaging (DTI) and their relationships to cognitive impairment in Parkinson disease (PD). Methods Seventy-five participants with PD and 24 healthy control (HC) participants underwent structural MRI brain scans including DTI sequences and clinical and neuropsychological evaluations. Using Movement Disorder Society criteria, PD participants were classified as having normal cognition (PD-NC, n = 23), mild cognitive impairment (PD-MCI, n = 35), or dementia (PDD, n = 17). Cognitive domain (attention/working memory, executive function, language, memory, visuospatial function) z scores were calculated. DTI scalar values, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), were established for 5 callosal segments on a midsagittal plane, single slice using a topographically derived parcellation method. Scalar values were compared among participant groups. Regression analyses were performed on cognitive domain z scores and DTI metrics. Results Participants with PD showed increased AD values in the anterior 3 callosal segments compared to healthy controls. Participants with PDD had significantly increased AD, MD, and RD in the anterior 2 segments compared to participants with PD-NC and most anterior segment compared to participants with PD-MCI. FA values did not differ significantly between participants with PD and participants with HC or among PD cognitive groups. The strongest associations for the DTI metrics and cognitive performance occurred in the most anterior and most posterior callosal segments, and also reflected fronto-striatal and posterior cortical type cognitive deficits, respectively. Conclusions Microstructural white matter abnormalities of the corpus callosum, as measured by DTI, may contribute to PD cognitive impairment by disrupting information transfer across interhemispheric and callosal-cortical projections.
AB - Objective To evaluate microstructural characteristics of the corpus callosum using diffusion tensor imaging (DTI) and their relationships to cognitive impairment in Parkinson disease (PD). Methods Seventy-five participants with PD and 24 healthy control (HC) participants underwent structural MRI brain scans including DTI sequences and clinical and neuropsychological evaluations. Using Movement Disorder Society criteria, PD participants were classified as having normal cognition (PD-NC, n = 23), mild cognitive impairment (PD-MCI, n = 35), or dementia (PDD, n = 17). Cognitive domain (attention/working memory, executive function, language, memory, visuospatial function) z scores were calculated. DTI scalar values, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), were established for 5 callosal segments on a midsagittal plane, single slice using a topographically derived parcellation method. Scalar values were compared among participant groups. Regression analyses were performed on cognitive domain z scores and DTI metrics. Results Participants with PD showed increased AD values in the anterior 3 callosal segments compared to healthy controls. Participants with PDD had significantly increased AD, MD, and RD in the anterior 2 segments compared to participants with PD-NC and most anterior segment compared to participants with PD-MCI. FA values did not differ significantly between participants with PD and participants with HC or among PD cognitive groups. The strongest associations for the DTI metrics and cognitive performance occurred in the most anterior and most posterior callosal segments, and also reflected fronto-striatal and posterior cortical type cognitive deficits, respectively. Conclusions Microstructural white matter abnormalities of the corpus callosum, as measured by DTI, may contribute to PD cognitive impairment by disrupting information transfer across interhemispheric and callosal-cortical projections.
UR - http://www.scopus.com/inward/record.url?scp=85058609840&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85058609840&partnerID=8YFLogxK
U2 - 10.1212/WNL.0000000000006646
DO - 10.1212/WNL.0000000000006646
M3 - Article
C2 - 30429273
AN - SCOPUS:85058609840
SN - 0028-3878
VL - 91
SP - E2244-E2255
JO - Neurology
JF - Neurology
IS - 24
ER -