White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults

Lauren E. Oberlin*, Timothy D. Verstynen, Agnieszka Z. Burzynska, Michelle W. Voss, Ruchika Shaurya Prakash, Laura Chaddock-Heyman, Chelsea Wong, Jason Fanning, Elizabeth Awick, Neha Gothe, Siobhan M. Phillips, Emily Mailey, Diane Ehlers, Erin Olson, Thomas Wojcicki, Edward McAuley, Arthur F. Kramer, Kirk I. Erickson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

97 Scopus citations

Abstract

White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N = 113 (mean age = 66.61) and Experiment 2, N = 154 (mean age = 65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected < .05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood.

Original languageEnglish (US)
Pages (from-to)91-101
Number of pages11
JournalNeuroimage
Volume131
DOIs
StatePublished - May 1 2016

Funding

This work was supported by the National Institute on Aging (NIA) at the National Institutes of Health (NIH) grants RO1 AG25667 , RO1 AG25032 and R37-AG025667 awarded to A.F.K. and E.M. In addition, this work was funded by NIH grants RO1 DK095172 and P30 AG024827 awarded to K.I.E. This work was also funded by a grant from Abbott Nutrition through the Center of Nutrition, Learning and Memory at the University of Illinois. This funder had no role in study design, data collection and analysis, decision to publish, or preparation of the article.

Keywords

  • Aging
  • Fitness
  • Memory
  • White matter

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults'. Together they form a unique fingerprint.

Cite this