Zr and Ba edge phenomena in the scintillation intensity of fluorozirconate-based glass-ceramic X-ray detectors

Bastian Henke, Stefan Schweizer*, Jacqueline A. Johnson, Denis T. Keane

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The energy-dependent scintillation intensity of Eu-doped fluorozirconate glass-ceramic X-ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu-doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X-ray excited scintillation is mainly due to the 5d-4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X-ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X-ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K-edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics.

Original languageEnglish (US)
Pages (from-to)252-256
Number of pages5
JournalJournal of Synchrotron Radiation
Volume14
Issue number3
DOIs
StatePublished - Apr 11 2007

Keywords

  • Energy-dependent scintillation intensity
  • Fluorozirconate glass ceramics
  • X-ray detector

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Instrumentation
  • Radiation

Fingerprint

Dive into the research topics of 'Zr and Ba edge phenomena in the scintillation intensity of fluorozirconate-based glass-ceramic X-ray detectors'. Together they form a unique fingerprint.

Cite this