TY - JOUR
T1 - Zr and Ba edge phenomena in the scintillation intensity of fluorozirconate-based glass-ceramic X-ray detectors
AU - Henke, Bastian
AU - Schweizer, Stefan
AU - Johnson, Jacqueline A.
AU - Keane, Denis T.
N1 - Funding Information:
Authors acknowledge the financial support provided by Tehran University of medical sciences, Tehran, Iran.
PY - 2007/4/11
Y1 - 2007/4/11
N2 - The energy-dependent scintillation intensity of Eu-doped fluorozirconate glass-ceramic X-ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu-doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X-ray excited scintillation is mainly due to the 5d-4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X-ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X-ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K-edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics.
AB - The energy-dependent scintillation intensity of Eu-doped fluorozirconate glass-ceramic X-ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu-doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X-ray excited scintillation is mainly due to the 5d-4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X-ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X-ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K-edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics.
KW - Energy-dependent scintillation intensity
KW - Fluorozirconate glass ceramics
KW - X-ray detector
UR - http://www.scopus.com/inward/record.url?scp=34247148000&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34247148000&partnerID=8YFLogxK
U2 - 10.1107/S0909049507007959
DO - 10.1107/S0909049507007959
M3 - Article
C2 - 17435300
AN - SCOPUS:34247148000
SN - 0909-0495
VL - 14
SP - 252
EP - 256
JO - Journal of Synchrotron Radiation
JF - Journal of Synchrotron Radiation
IS - 3
ER -